Cart (Loading....) | Create Account
Close category search window
 

Feature subset selection for support vector machines through discriminative function pruning analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mao, K.Z. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore

In many pattern classification applications, data are represented by high dimensional feature vectors, which induce high computational cost and reduce classification speed in the context of support vector machines (SVMs). To reduce the dimensionality of pattern representation, we develop a discriminative function pruning analysis (DFPA) feature subset selection method in the present study. The basic idea of the DFPA method is to learn the SVM discriminative function from training data using all input variables available first, and then to select feature subset through pruning analysis. In the present study, the pruning is implement using a forward selection procedure combined with a linear least square estimation algorithm, taking advantage of linear-in-the-parameter structure of the SVM discriminative function. The strength of the DFPA method is that it combines good characters of both filter and wrapper methods. Firstly, it retains the simplicity of the filter method avoiding training of a large number of SVM classifier. Secondly, it inherits the good performance of the wrapper method by taking the SVM classification algorithm into account.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 1 )

Date of Publication:

Feb. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.