By Topic

Chaotic motions in the dynamics of a hopping robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vakakis, A.F. ; Sch. of Eng. & Appl. Sci., California Inst. of Technol., Pasadena, CA, USA ; Burdick, J.W.

Discrete dynamical systems theory is applied to the dynamic stability analysis of a simplified hopping robot. A Poincare return map is developed to capture the system dynamics behavior, and two basic nondimensional parameters which influence the systems dynamics are identified. The hopping behavior of the system is investigated by constructing the bifurcation diagrams of the Poincare return map with respect to these parameters. The bifurcation diagrams show a period-doubling cascade leading to a regime of chaotic behavior, where a strange attractor is developed. One feature of the dynamics is that the strange attractor can be controlled and eliminated by tuning an appropriate parameter corresponding to the duration of applied hopping thrust. Physically, the collapse of the strange attractor leads to globally stable uniform hopping motion

Published in:

Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on

Date of Conference:

13-18 May 1990