Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Zero dynamics-based design of damping networks for switching converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Calvente, J. ; Departament d''Enginyeria Electronica, Univ. Rovira i Virgili, Tarragona, Spain ; Martinez-Salamero, L. ; Garces, P. ; Romero, A.

A new design technique of the input filter damping network for dc-to-dc switching converters of buck type is presented. This technique is derived by means of zero dynamics analysis of the switching converter and yields equivalent results to those obtained using the classical approach based on minimizing the filter output impedance. The new method can be applied in converters of buck type with two inductors, boost with two inductors and dual SEPIC. Simulation and experimental results corresponding to a boost converter with two inductors illustrate the procedure.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:39 ,  Issue: 4 )