By Topic

Deadlock control methods in automated manufacturing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fanti, M.P. ; Electr. & Electron. Eng. Dept., Polytech. of Bari, Italy ; MengChu Zhou

As more and more producers move to use flexible and agile manufacturing as a way to keep them with a competitive edge, the investigations on deadlock resolution in automated manufacturing have received significant attention for a decade. Deadlock and related blocking phenomena often lead to catastrophic results in automated manufacturing systems. Their efficient handling becomes a necessary condition for a system to gain high productivity. This paper intends to present a tutorial survey of state-of-the art modeling and deadlock control methods for discrete manufacturing systems. It presents the updated results in the areas of deadlock prevention, detection and recovery, and avoidance. It focuses on three modeling methods: digraphs, automata, and Petri nets. Moreover, for each approach, the main and relevant contributions are selected enlightening pros and cons. The paper concludes with the future research needs in this important area in order to bridge the gap between the academic research and industrial needs.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:34 ,  Issue: 1 )