Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Development and characterization of surface micromachined, out-of-plane hot-wire anemometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, J. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Chang Liu

In this paper, we report the development of a new type of hot-wire anemometer (HWA) realized by using a microfabrication process that combines surface micromachining and an efficient three-dimensional assembly technique. The HWA uses a thermal element (hot wire) that is made of Pt/Ni/Pt film with a measured temperature coefficient of resistance (TCR) of 2400 ppm/°C. The thermal element is elevated out of plane by using support beams made of polyimide. In our current design, the support beam is 2.7 μm thick and up to 1 mm tall, and the length of the thermal element varies from 50 μm to 200 μm. Steady-state response to air velocity has been experimentally obtained up to 20 m/s under both constant current (CC) and constant temperature (CT) modes. The transient-state response has been examined using square wave and sinusoidal wave excitation signals in CT modes with the maximum cutoff frequency found to be approximately 10 kHz. This new HWA offers a number of unique materials and performance characteristics. The sensor does not require the use of silicon as either substrate or sensing materials. Using this process, it is possible to form large arrays of HWA on a variety of substrate materials.

Published in:

Microelectromechanical Systems, Journal of  (Volume:12 ,  Issue: 6 )