By Topic

High-voltage constraints for vacuum packaged microstructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilson, C.G. ; EECS Dept., Univ. of Michigan, Ann Arbor, MI, USA ; Gianchandani, Y.B. ; Wendt, Amy E.

In order to understand the details of high-field breakdown in microstructures that are vacuum packaged, a series of experiments are used to determine characteristics of microdischarges. The results support a reinterpretation of conventional assumptions based upon large scale discharges. When planar microelectrodes are used, Paschen's curve is not applicable in the traditional sense: the breakdown voltage is relatively insensitive to pressure in the 1-20 torr range, and remains at ∼400 V for air ambient. However, the spatial distribution of discharge current does vary with the pressure and the power. Large voltage gradients are supported in the glow region which is confined to a few millimeters directly above the cathode, and within a few hundred microns of its lateral edge. Their magnitudes range from 100,000-500,000 V/m for operating pressures ranging from 1.2-6 torr. Based on these results, guidelines are provided for the design of high-voltage microsystems.

Published in:

Microelectromechanical Systems, Journal of  (Volume:12 ,  Issue: 6 )