Cart (Loading....) | Create Account
Close category search window
 

Evolutionary synthesis of digital filter structures using genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Uesaka, K. ; Dept. of Electron. Eng., Tohoku Univ., Sendai, Japan ; Kawamata, M.

This paper presents a synthesis method for infinite-impulse response (IIR) digital filter structures using genetic programming with automatically defined functions (GP-ADF). In the proposed method, digital filter structures are represented as S-expressions with subroutines, which are written directly from the set of difference equations. This paper also shows the condition for the constructing the S-expressions that represent the filter structures without delay-free loops. Numerical examples synthesize two-filter structures: the low-coefficient sensitivity fourth-order filter structure and the low-output roundoff noise second-order filter structure.

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 12 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.