By Topic

Checkpoint processing and recovery: towards scalable large instruction window processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Akkary, H. ; Microprocessor Res. Labs, Intel Corp., Hillsboro, OR, USA ; Rajwar, R. ; Srinivasan, S.T.

Large instruction window processors achieve high performance by exposing large amounts of instruction level parallelism. However, accessing large hardware structures typically required to buffer and process such instruction window sizes significantly degrade the cycle time. This paper proposes a checkpoint processing and recovery (CPR) microarchitecture, and shows how to implement a large instruction window processor without requiring large structures thus permitting a high clock frequency. We focus of four critical aspects of a microarchitecture: 1) scheduling instructions; 2) recovering from branch mispredicts; 3) buffering a large number of stores and forwarding data from stores to any dependent load; and 4) reclaiming physical registers. While scheduling window size is important, we show the performance of large instruction windows to be more sensitive to the other three design issues. Our CPR proposal incorporates novel microarchitecture scheme for addressing these design issues-a selective checkpoint mechanism for recovering from mispredicts, a hierarchical store queue organization for fast store-load forwarding, and an effective algorithm for aggressive physical register reclamation. Our proposals allow a processor to realize performance gains due to instruction windows of thousands of instructions without requiring large cycle-critical hardware structures.

Published in:

Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on

Date of Conference:

3-5 Dec. 2003