By Topic

All-optical TDM data demultiplexing at 80 Gb/s with significant timing jitter tolerance using a fiber Bragg grating based rectangular pulse switching technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ju Han Lee ; Optoelectronics Res. Centre, Univ. of Southampton, UK ; L. K. Oxenlwe ; M. Ibsen ; K. S. Berg
more authors

We demonstrate the use of fiber Bragg grating based pulse-shaping technology to provide timing jitter tolerant data demultiplexing in an 80 Gb/s all-optical time division multiplexing (OTDM) system. Error-free demultiplexing operation is achieved with ∼6 ps timing jitter tolerance using superstructured fiber Bragg grating based 1.7 ps soliton to 10 ps rectangular pulse conversion at the switching pulse input to a nonlinear optical loop mirror (NOLM) demultiplexer comprising highly nonlinear dispersion shifted fiber (HNLF). A 2-dB power-penalty improvement is obtained compared to demultiplexing without the pulse-shaping grating.

Published in:

Journal of Lightwave Technology  (Volume:21 ,  Issue: 11 )