By Topic

Waveband grooming and IP aggregation in optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Parthiban ; ARC Special Res. Centre for Ultra-Broadband Inf. Networks, Univ. of Melbourne, Vic., Australia ; R. S. Tucker ; C. Leckie

An automatically switched optical network (ASON) can be used as the transport layer of generalized multiprotocol label switching (GMPLS) networks. The design of an ASON involves determining the number of optical cross-connects (OXC) in the network, the required number of ports per OXC, and the interconnection topology of the OXCs. Given the number of ports per OXC, we present a linear algorithm to find the number of OXCs and to identify a cost-effective topology. We then develop a scheme that can be used to perform waveband grooming for several different topologies of an ASON that uses single-layer multigranular OXCs. We identify the bottlenecks and investigate the effect of traffic grooming schemes in the design of an ASON as a function of the peak access rate per customer. We evaluate the topologies and architectures for a national trunk network.

Published in:

Journal of Lightwave Technology  (Volume:21 ,  Issue: 11 )