Cart (Loading....) | Create Account
Close category search window
 

A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianwen Shao ; Power Syst. Applications Lab., STMicroelectronics, Schaumburg, IL, USA ; Nolan, D. ; Teissier, M. ; Swanson, D.

This paper presents a novel back-electromotive-force (EMF) detection method for sensorless brushless DC (BLDC) motor drive systems. By this method, a true back-EMF signal can be directly extracted for each phase without sensing the neutral point of the motor. The method proposed is not sensitive to switching noise and requires no filtering. Good motor performance is achieved over a wide speed range as well. This novel sensing scheme is implemented into a hardware macro cell inside a mixed-signal microcontroller. The proposed microcontroller-based sensorless BLDC drive system has been successfully applied to automotive fuel-pump applications, which require high reliability and intelligence at a low cost.

Published in:

Industry Applications, IEEE Transactions on  (Volume:39 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.