Cart (Loading....) | Create Account
Close category search window

Three-dimensional ionic wind and electrohydrodynamics of tuft/point corona electrostatic precipitator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yamamoto, T. ; Dept. of Energy Syst. Eng., Osaka Prefecture Univ., Sakai, Japan ; Okuda, M. ; Okubo, Masaaki

The two-dimensional flow interaction between the primary flow and the secondary flow (often called an electric wind or ionic wind) in the wire-duct electrostatic precipitator (ESP) has been investigated theoretically and experimentally in the past. However, the analysis was limited to the two-dimensional, which is acceptable only for the positive polarity and small tuft spacing. The negative corona, commonly used for the industrial ESPs, generates tufts along the corona wire and the point coronas on the discharge wire and requires three-dimensional analysis. Three-dimensional electric field and space-charge density distributions, and the flow interaction between the primary flow and secondary flow, i.e., electrohydrodynamics were investigated. The computational results show that the secondary flow distribution consists of a donut-shaped ring from each tuft or corona point, which was predicted by the first author 16 years ago. When the primary flow exists, a pair of spiral rings, like Goertler vortices, is formed in the direction of the primary flow. The flow interaction was described using dimensionless number NEHD, which is the ratio of the ionic wind velocity to the primary flow velocity. The effects of particle motion in the electrohydrodynamic field in the tuft/point corona ESPs are discussed.

Published in:

Industry Applications, IEEE Transactions on  (Volume:39 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.