By Topic

Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Elgammal ; Dept. of Comput. Sci., Rutgers Univ., USA ; R. Duraiswami ; L. S. Davis

Many vision algorithms depend on the estimation of a probability density function from observations. Kernel density estimation techniques are quite general and powerful methods for this problem, but have a significant disadvantage in that they are computationally intensive. In this paper, we explore the use of kernel density estimation with the fast Gauss transform (FGT) for problems in vision. The FGT allows the summation of a mixture of ill Gaussians at N evaluation points in O(M+N) time, as opposed to O(MN) time for a naive evaluation and can be used to considerably speed up kernel density estimation. We present applications of the technique to problems from image segmentation and tracking and show that the algorithm allows application of advanced statistical techniques to solve practical vision problems in real-time with today's computers.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:25 ,  Issue: 11 )