By Topic

Epidemic spreading in real networks: an eigenvalue viewpoint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang Wang ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; D. Chakrabarti ; Chenxi Wang ; C. Faloutsos

How will a virus propagate in a real network? Does an epidemic threshold exist for a finite graph? How long does it take to disinfect a network given particular values of infection rate and virus death rate? We answer the first question by providing equations that accurately model virus propagation in any network including real and synthesized network graphs. We propose a general epidemic threshold condition that applies to arbitrary graphs: we prove that, under reasonable approximations, the epidemic threshold for a network is closely related to the largest eigenvalue of its adjacency matrix. Finally, for the last question, we show that infections tend to zero exponentially below the epidemic threshold. We show that our epidemic threshold model subsumes many known thresholds for special-case graphs (e.g., Erdos-Renyi, BA power-law, homogeneous); we show that the threshold tends to zero for infinite power-law graphs. We show that our threshold condition holds for arbitrary graphs.

Published in:

Reliable Distributed Systems, 2003. Proceedings. 22nd International Symposium on

Date of Conference:

6-18 Oct. 2003