By Topic

An empirical comparison of in-learning and post-learning optimization schemes for tuning the support vector machines in cost-sensitive applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Support vector machines (SVM) are currently one of the classification systems most used in pattern recognition and data mining because of their accuracy and generalization capability. However, when dealing with very complex classification tasks where different errors bring different penalties, one should take into account the overall classification cost produced by the classifier more than its accuracy. It is thus necessary to provide some methods for tuning the SVM on the costs of the particular application. Depending on the characteristics of the cost matrix, this can be done during or after the learning phase of the classifier. In this paper we introduce two optimization schemes based on the two possible approaches and compare their performance on various data sets and kernels. The first experimental results show that both the proposed schemes are suitable for tuning SVM in cost-sensitive applications.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003