Cart (Loading....) | Create Account
Close category search window
 

Grey-level morphology combined with an artificial neural networks approach for multimodal segmentation of the Hippocampus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hult, R. ; Centre for Image Anal., Uppsala Univ., Sweden

This paper presents an algorithm that continues segmentation from a semi automatic artificial neural network (ANN) segmentation of the Hippocampus of registered T1-weighted and T2-weighted MRI data. Due to the morphological complexity of the Hippocampus and difficulty of separating from adjacent structures, reproducible segmentation using MR imaging is complicated. The human intervention in the ANN approach, consists of selecting a bounding-box. Grey-level dilated and grey-level eroded versions of the T1-weighted and T2-weighted data are used to minimise leaking from Hippocampus to surrounding tissue combined with possible foreground tissue. The segmentation algorithm uses a histogram-based method to find accurate threshold values. Grey-level morphology is a powerful tool to break stronger connections between the Hippocampus and surrounding regions than is otherwise possible. The method is 3D in the sense that all grey-level morphology operations use a 3 × 3 × 3 structure element and the herein described algorithms are applied in the three directions, sagittal, axial, and coronal, and the result are then combined together.

Published in:

Image Analysis and Processing, 2003.Proceedings. 12th International Conference on

Date of Conference:

17-19 Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.