By Topic

An in-situ temperature measurement system for DUV lithography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Woei Wan Tan ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; R. F. Y. Li

Spatial uniformity of temperature across a silicon wafer is an important requirement during the post-exposure bake step of the deep-ultra-violet lithography process. Closed-loop temperature control provides a means by which the stringent temperature specifications can be achieved, provided that accurate feedback signal is available. As each new wafer is loaded for processing, its level of thermal contact with the temperature sensor may vary, leading to erroneous measurement of the wafer temperature. Such variation in thermal contact manifests itself as changes in the time constant of the sensor. This paper describes a method for in-situ estimation of the sensor parameters, and proposes an algorithm for post-processing the sensor output to improve measurement accuracy. Experimental results are presented to demonstrate the effectiveness of the algorithm in improving the accuracy of the feedback signal, thereby reducing the undesirable influence of poor thermal contact on the performance of the closed-loop temperature control system.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:52 ,  Issue: 4 )