Cart (Loading....) | Create Account
Close category search window
 

3D structural homology detection via unassigned residual dipolar couplings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Langmead, C.J. ; Dept. of Comput. Sci., Dartmouth Coll., Hanover, NH, USA ; Donald, B.R.

Recognition of a protein's fold provides valuable information about its function. While many sequence-based homology prediction methods exist, an important challenge remains: two highly dissimilar sequences can have similar folds - how can we detect this rapidly, in the context of structural genomics? High-throughput NMR experiments, coupled with novel algorithms for data analysis, can address this challenge. We report an automated procedure for detecting 3D structural homologies from sparse, unassigned protein NMR data. Our method identifies the 3D structural models in a protein structural database whose geometries best fit the Unassigned experimental NMR data. It does not use sequence information and is thus not limited by sequence homology. The method can also be used to confirm or refute structural predictions made by other techniques such as protein threading or sequence homology. The algorithm runs in O(pnk3) time, where p is the number of proteins in the database, n is the number of residues in the target protein, and k is the resolution of a rotation search. The method requires only uniform 15N-labelling of the protein and processes unassigned HN-15N residual dipolar couplings, which can be acquired in a couple of hours. Our experiments on NMR data from 5 different proteins demonstrate that the method identifies closely related protein folds, despite low-sequence homology between the target protein and the computed model.

Published in:

Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE

Date of Conference:

11-14 Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.