By Topic

Towards index-based similarity search for protein structure databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
O. Camoglu ; Dept. of Comput. Sci., California Univ., Santa Barbara, CA, USA ; T. Kahveci ; A. K. Singh

We propose two methods for finding similarities in protein structure databases. Our techniques extract feature vectors on triplets of SSEs (secondary structure elements) of proteins. These feature vectors are then indexed using a multidimensional index structure. Our first technique considers the problem of finding proteins similar to a given query protein in a protein dataset. This technique quickly finds promising proteins using the index structure. These proteins are then aligned to the query protein using a popular pairwise alignment tool such as VAST. We also develop a novel statistical model to estimate the goodness of a match using the SSEs. Our second technique considers the problem of joining two protein datasets to find an all-to-all similarity. Experimental results show that our techniques improve the pruning time of VAST3 to 3.5 times while keeping the sensitivity similar.

Published in:

Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE

Date of Conference:

11-14 Aug. 2003