By Topic

Vibration analysis via neural network inverse models to determine aircraft engine unbalance condition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiao Hu ; Appl. Comput. Intelligence Lab., Missouri Univ., Rolla, MO, USA ; J. Vian ; J. R. Slepski ; D. C. Wunsch

This paper describes the use of artificial neural networks (ANNs) with the vibration data from real flight tests for detecting engine health condition - mass imbalance herein. Order-tracking data, calculated from time series is used as the input to the neural networks to determine the amount and location of mass imbalance on aircraft engines. Several neural network methods, including multilayer perceptron (MLP), extended Kalman filter (EKF) and support vector machines (SVMs) are used in the neural network inverse model for the performance comparison. The promising performances are presented at the end.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003