By Topic

Systems identification using type-2 fuzzy neural network (type-2 FNN) systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ching-Hung Lee ; Dept. of Electr. Eng., Yuan-Ze Univ., Chung-li, Taiwan ; Yu-Ching Lin ; Wei-Yu Lai

This paper presents a type-2 fuzzy neural network system (type-2 FNN) and its learning algorithm using back-propagation algorithm. In our previous results, the FNN system using type-1 fuzzy logic systems (FLS) is called type-1 FNN system. It has the properties of parallel computation scheme, easy to implement, fuzzy logic inference system, and parameters convergence. For considering the fuzzy rules uncertainties, we use the type-2 FLSs to develop a type-2 FNN system. The type-2 fuzzy sets let us model and minimize the effects of uncertainties in rule-based fuzzy logic systems (FLSs). In this paper, the previous results of type-1 FNN are extended to a type-2 one. In addition, the corresponding learning algorithm is derived by back-program algorithm. Several examples are presented to illustrate the effectiveness of our approach.

Published in:

Computational Intelligence in Robotics and Automation, 2003. Proceedings. 2003 IEEE International Symposium on  (Volume:3 )

Date of Conference:

16-20 July 2003