By Topic

Mapping of generalized template matching onto reconfigurable computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuejun Liang ; Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA ; Jean, J.S.-N.

Image processing algorithms for template matching, two-dimensional (2-D) digital filtering, morphologic operations, and motion estimation share some common properties. They can all benefit from using reconfigurable computers that use coprocessor boards based on field-programmable gate array (FPGA) chips. This paper characterizes those applications as generalized template matching (GTM) operations and describes the mapping of the GTM operations onto reconfigurable computers. A three-step approach is described. The first two steps enumerate and prune the design space of basic GTM building blocks, which consist of FPGA buffers and GTM computation cores. The last step is to achieve a solution through an optimal combination of these building blocks where the cost function is the FPGA computation time and the constraints are FPGA coprocessor board resources. Various FPGA buffers are presented so as to introduce design options of basic GTM building blocks. Algorithms used for the mapping are described. Experimental results are summarized to reveal the relationship between the GTM mapping results and FPGA board resource parameters.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 3 )