By Topic

Measurement and analysis of single-hop delay on an IP backbone network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We measure and analyze the single-hop packet delay through operational routers in the Sprint Internet protocol (IP) backbone network. After presenting our delay measurements through a single router for OC-3 and OC-12 link speeds, we propose a methodology to identify the factors contributing to single-hop delay. In addition to packet processing, transmission, and queueing delay at the output link, we observe the presence of very large delays that cannot be explained within the context of a first-in first-out output queue model. We isolate and analyze these outliers. Results indicate that there is very little queueing taking place in Sprint's backbone. As link speeds increase, transmission delay decreases and the dominant part of single-hop delay is packet processing time. We show that if a packet is received and transmitted on the same linecard, it experiences less than 20 μs of delay. If the packet is transmitted across the switch fabric, its delay doubles in magnitude. We observe that processing due to IP options results in single-hop delays in the order of milliseconds. Milliseconds of delay may also be experienced by packets that do not carry IP options. We attribute those delays to router idiosyncratic behavior that affects less than 1% of the packets. Finally, we show that the queueing delay distribution is long-tailed and can be approximated with a Weibull distribution with the scale parameter a=0.5 and the shape parameter b=0.6 to 0.82.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:21 ,  Issue: 6 )