Cart (Loading....) | Create Account
Close category search window
 

Microwave bonding of polymer-based substrates for micro-nano fluidic applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Kin Fong Lei ; Centre for Micro & Nano Syst., Chinese Univ. of Hong Kong, China ; Li, W.J. ; Budraa, N. ; Mai, J.D.

Microwave-based bonding of polymer substrates is presented in this paper to illustrate a promising technique for achieving precise, well-controlled, low temperature bonding. Microwave power is absorbed by a very thin film metal layer already deposited on the polymer (PMMA) substrate surface. The intense thin-film volumetric heating promotes localized melting of refractory metals such as gold. One of the advantages of the process is that PMMA is relatively transparent to microwave energy in the 2.4 GHz regime. This makes it an excellent substrate material for microwave bonding. Selective heating and melting of the thin layers of metal also causes localized melting of the PMMA substrates and improves adhesion at the interface. We have shown that /spl sim/1 /spl mu/m of interfacial layer can be generated which composed of the melted gold and PMMA, and which can hold the substrates together under applied tension greater than 1001b/in/sup 2/. We also used lithographically patterned metal lines on the PMMA substrate to demonstrate that the PMMA remains optically transparent after microwave processing.

Published in:

TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003  (Volume:2 )

Date of Conference:

8-12 June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.