By Topic

Combining support vector machine learning with the discrete cosine transform in image compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Robinson, J. ; Sch. of Eng., Univ. of Auckland, New Zealand ; Kecman, V.

We present an algorithm for the application of support vector machine (SVM) learning to image compression. The algorithm combines SVMs with the discrete cosine transform (DCT). Unlike a classic radial basis function networks or multilayer perceptrons that require the topology of the network to be defined before training, an SVM selects the minimum number of training points, called support vectors, that ensure modeling of the data within the given level of accuracy (a.k.a. insensitivity zone ε). It is this property that is exploited as the basis for an image compression algorithm. Here, the SVMs learning algorithm performs the compression in a spectral domain of DCT coefficients, i.e., the SVM approximates the DCT coefficients. The parameters of the SVM are stored in order to recover the image. Results demonstrate that even though there is an extra lossy step compared with the baseline JPEG algorithm, the new algorithm dramatically increases compression for a given image quality; conversely it increases image quality for a given compression ratio. The approach presented can be readily applied for other modeling schemes that are in a form of a sum of weighted basis functions.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 4 )