By Topic

Learning to control brain rhythms: making a brain-computer interface possible

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pineda, J.A. ; Cognitive Sci. Dept. 0515, Univ. of California, San Diego, La Jolla, CA, USA ; Silverman, D.S. ; Vankov, A. ; Hestenes, J.

The ability to control electroencephalographic rhythms and to map those changes to the actuation of mechanical devices provides the basis for an assistive brain-computer interface (BCI). In this study, we investigate the ability of subjects to manipulate the sensorimotor mu rhythm (8-12-Hz oscillations recorded over the motor cortex) in the context of a rich visual representation of the feedback signal. Four subjects were trained for approximately 10 h over the course of five weeks to produce similar or differential mu activity over the two hemispheres in order to control left or right movement in a three-dimensional video game. Analysis of the data showed a steep learning curve for producing differential mu activity during the first six training sessions and leveling off during the final four sessions. In contrast, similar mu activity was easily obtained and maintained throughout all the training sessions. The results suggest that an intentional BCI based on a binary signal is possible. During a realistic, interactive, and motivationally engaging task, subjects learned to control levels of mu activity faster when it involves similar activity in both hemispheres. This suggests that while individual control of each hemisphere is possible, it requires more learning time.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )