By Topic

Real-world applications for brain-computer interface technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Moore, M.M. ; Comput. Inf. Syst. Dept., Georgia State Univ., Atlanta, GA, USA

The mission of the Georgia State University BrainLab is to create and adapt methods of human-computer interaction that will allow brain-computer interface (BCI) technologies to effectively control real-world applications. Most of the existing BCI applications were designed largely for training and demonstration purposes. Our goal is to research ways of transitioning BCI control skills learned in training to real-world scenarios. Our research explores some of the problems and challenges of combining BCI outputs with human-computer interface paradigms in order to achieve optimal interaction. We utilize a variety of application domains to compare and validate BCI interactions, including communication, environmental control, neural prosthetics, and creative expression. The goal of this research is to improve quality of life for those with severe disabilities.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )