By Topic

Stress distribution on [100] Si wafer mapped by novel I-V analysis of MOS tunneling diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong, Chao-Chi ; Dept. of Electr. Eng, Nat. Taiwan Univ., Taipei, Taiwan ; Hwu, Jenn-Gwo

The current-voltage (I-V) characteristics of metal-oxide-semiconductor tunneling diodes distributed over a 3-in Si wafer were analyzed to investigate the stress distribution on the wafer. Generally, the substrate injection saturation current (J/sub sat/) decreases as the gate injection leakage current (J/sub g/) increases, the latter being dominated by oxide thickness via a trap related mechanism. A universal curve to fit all analyzed data was found and it is suggested that devices with extremely high (low) J/sub sat/ at a given J/sub g/ should be located in areas of the silicon lattice with relatively high external compressive (tensile) stress because of the stress-induced bandgap variation effect. The mapped locations of the highly stressed devices on a 3-in [100] Si wafer correspond to the patterns of slips caused by thermal stress during rapid thermal processing, as described in previous reports.

Published in:

Electron Device Letters, IEEE  (Volume:24 ,  Issue: 6 )