By Topic

Partitioning with space-filling curves on the cubed-sphere

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dennis, J.M. ; Sci. Comput. Div., Nat. Center for Atmos. Res., Boulder, CO, USA

Numerical methods for solving the systems of partial differential equations arising in geophysical fluid dynamics rely on a variety of spatial discretization schemes (e.g. finite difference, finite element). For parallel execution on distributed memory computers, the computational domain must be partitioned. The choice of partitioning algorithm can have a significant impact on the sustained floating point execution rate of an atmospheric model. The NCAR spectral element atmospheric model employs a gnomonic projection of a cube onto the surface of the sphere. The six cube faces are each subdivided into an array of quadrilateral spectral elements. When the cubed-sphere is partitioned using METIS, both computational load imbalance and communication requirements can lead to sub-optimal performance. In this paper, Hilbert, Peano, and nested Hilbert m-Peano space filling curves are investigated as the basis of alternative partitioning algorithms. The resulting partitions allow a maximum 22% increase in the sustained floating point execution rate versus METIS on O(1000) processors, when running a relatively high resolution climate simulation.

Published in:

Parallel and Distributed Processing Symposium, 2003. Proceedings. International

Date of Conference:

22-26 April 2003