By Topic

Bayesian human segmentation in crowded situations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Zhao ; Inst. for Robotics & Intelligent Syst., Univ. of Southern California, Los Angeles, CA, USA ; Nevatia, R.

The problem of segmenting individual humans in crowded situations from stationary video camera sequences is exacerbated by object inter-occlusion. We pose this problem as a "model-based segmentation" problem in which human shape models are used to interpret the foreground in a Bayesian framework. The solution is obtained by using an efficient Markov chain Monte Carlo (MCMC) method that uses domain knowledge as proposal probabilities. Knowledge of various aspects including human shape, human height, camera model, and image cues including human head candidates, foreground/background separation are integrated in one theoretically sound framework. We show promising results and evaluations on some challenging data.

Published in:

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

18-20 June 2003