By Topic

A high efficient 820 nm MOS Ge quantum dot photodetector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
B. -C. Hsu ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; S. T. Chang ; T. -C. Chen ; P. -S. Kuo
more authors

A Ge quantum dot photodetector has been demonstrated using a metal-oxide-semiconductor (MOS) tunneling structure. The oxide film was grown by liquid phase deposition (LPD) at 50/spl deg/C. The photodetector with five-period Ge quantum dot has responsivity of 130, 0.16, and 0.08 mA/W at wavelengths of 820 nm, 1300 nm, and 1550 nm, respectively. The device with 20-period Ge quantum dot shows responsivity of 600 mA/W at the wavelength of 850 nm. The room temperature dark current density is as low as 0.06 mA/cm/sup 2/. The high performance of the photodetectors at 820 nm makes it feasible to integrate electrooptical devices into Si chips for short-range optical communication.

Published in:

IEEE Electron Device Letters  (Volume:24 ,  Issue: 5 )