By Topic

A self-controllable voltage level (SVL) circuit and its low-power high-speed CMOS circuit applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Enomoto ; Dept. of Inf. & Syst. Eng., Chuo Univ., Tokyo, Japan ; Y. Oka ; H. Shikano

A self-controllable voltage level (SVL) circuit which can supply a maximum dc voltage to an active-load circuit on request or can decrease the dc voltage supplied to a load circuit in standby mode was developed. This SVL circuit can drastically reduce standby leakage power of CMOS logic circuits with minimal overheads in terms of chip area and speed. Furthermore, it can also be applied to memories and registers, because such circuits fitted with SVL circuits can retain data even in the standby mode. The standby power of an 8-bit 0.13-μm CMOS ripple carry adder (RCA) with an on-chip SVL circuit is 8.2 nW, namely, 4.0% of that of an equivalent conventional adder, while the output signal delay is 786 ps, namely, only 2.3% longer than that of the equivalent conventional adder. Moreover, the standby power of a 512-bit memory cell array incorporating an SVL circuit for a 0.13-μm 512-bit SRAM is 69.1 nW, which is 3.9% of that of an equivalent conventional memory-cell array. The read-access time of this 0.13-μm SRAM is 285 ps, that is, only 2 ps slower than that of the equivalent SRAM.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:38 ,  Issue: 7 )