By Topic

Recognition of handwritten characters using modified fuzzy hyperline segment neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. M. Patil ; Electron. & Comput. Sci. & Eng. Dept., S.G.G.S. Coll. of Eng. & Technol., Vishnupuri, India ; P. S. Dhabe ; U. V. Kulkarni ; T. R. Sontakke

In this paper membership function of fuzzy hyperline segment neural network (FHLSNN) proposed by U.V. Kulkarni and T.R. Sontakke is modified to maintain convexity. The modified membership function is found superior than the function defined by them, which gives relatively lower values to the patterns which are falling close to the hyperline segment (HLS) but far from two end points of HLS. The performance of modified fuzzy hyperline segment neural network (MFHLSNN) is tested with the two splits of FISHER IRIS data and is found superior than FHLSNN. The modified neural network is also found superior than the general fuzzy min-max neural network (GFMM), proposed by Bogdan Gabrys and Andrzej Bargiela, and general fuzzy hypersphere neural network (GFHSNN), proposed by U.V. Kulkarni, D.D. Doye and T.R. Sontakke.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003