By Topic

Rule extraction using a neuro-fuzzy learning algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhi-Qiang Liu ; Sch. of Creative Media, City Univ. of Hong Kong, China ; Ya-Jun Zhang

In this paper we present a neural-fuzzy approach to rule extraction, which is based on a generic definition of incremental perceptron and a new competitive learning algorithm we recently developed. It extracts a suitable number of rule patches and their positions and shapes in the input space. Initially the rule base consists of only a single fuzzy rule; during the iterative learning process the rule base expands according to a supervised spawning-validity measure. The rule induction process terminates when a stop criterion is satisfied. The proposed approach will be effective in dynamic data-mining applications. To demonstrate the effectiveness and applicability of our algorithm, we present a simulation result. This algorithm is currently being tested on a number of data sets from biology and the Web.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003