By Topic

An immuno-fuzzy approach to anomaly detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gomez, J. ; Comput. Sci. Div., The Univ. of Memphis, TN, USA ; Gonzalez, F. ; Dasgupta, D.

This paper presents a new technique for generating a set of fuzzy rules that can characterize the non-self space (abnormal) using only self (normal) samples. Because, fuzzy logic can provide a better characterization of the boundary between normal and abnormal, it can increase the accuracy in solving the anomaly detection problem. Experiments with synthetic and real data sets are performed in order to show the applicability of the proposed approach and also to compare with other works reported in the literature.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003