By Topic

A genetic image segmentation algorithm with a fuzzy-based evaluation function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoying Jin ; Dept. of Electr. & Comput. Eng., Missouri Univ., Columbia, MO, USA ; Davis, C.H.

In this paper, a genetic-based image segmentation method is proposed which optimizes a fuzzy-set-based evaluation function. A K-Means clustering method is used to generate the initial finely segmented image and to reduce the search space of the image segmentation. A genetic algorithm is then employed to control region splitting and merging to optimize the evaluation function. A critical factor affecting the performance of the segmentation is the choice of the evaluation function in the design of genetic algorithm. Here an evaluation function is defined that incorporates both edge and region information. Considering the edge ambiguity in the image, a novel fuzzy-set-based edge-boundary-coincidence measure is defined and combined with a region heterogeneity measure to guide the genetic algorithm to tune the segmentation. Experimental results on test images show that the genetic segmentation algorithm with the fuzzy-set-based evaluation function performs very well.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003