By Topic

Fuzzy neural networks(FNN)-based approach for personalized facial expression recognition with novel feature selection method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dae-Jin Kim ; Dept. of Electr. Eng. & Comput. Sci., KAIST, Daejeon, South Korea ; Zeungnam Bien ; Kwang-Hyun Park

Facial expression recognition is very important in many human-robot/human-computer interaction systems. Although so many researches are done, it is hard to find a practical applications in the real world due to its underestimate about individual differences among people. Thus, as a solution for such problem, we introduce a 'personalized' facial expression recognition system. Many previous works on facial expression recognition focus on the well-known six universal facial expressions (happy, sad, fear, angry, surprise and disgust) under usage of unified (or non-separated) classification approach. However, for ordinary people, it is a very difficult task to make such facial expressions without much effort and training. Instead of universal facial expressions, many people show 'personalized' or 'individualized' facial expressions typically. Thus, for dealing with such personalities, we propose a method to construct a personalized classifier based on novel feature selection method. Specifically, feature selection is done by histogram-based approach in the frame of fuzzy neural networks(FNN). Besides, we also use an integrated approach for facial expression recognition. Actual experiments/simulations show that the proposed method is effective not only in view of facial expression recognition but also in view of pattern classifier itself.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003