By Topic

A convex cluster merging algorithm using support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. C. -H. Rhee ; Dept. of Electron. Eng., Hanyang Univ., Ansan, South Korea ; Byung-In Choi

In this paper, we propose a fast and reliable distance measure between two convex clusters using support vector machines (SVM). In doing so, the optimal hyperplane obtained by the SVM is used to calculate the minimal distance between the two clusters. As a result, an effective cluster merging algorithm that groups convex clusters resulted from the fuzzy convex clustering (FCC) method in is developed using this optimal distance. Hence, the number of clusters can be further reduced without losing its representation of the data. Several experimental results are given.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003