By Topic

Detection of land mines using fuzzy and possibilistic membership functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Frigui, H. ; Dept. of Electr. & Comput. Eng., Memphis Univ., TN, USA ; Satyanarayana, K. ; Gader, P.

This paper introduces a new system for real-time land mine detection using sensor data generated by a Ground Penetrating Radar (GPR). The GPR produces a three-dimensional array of intensity values, representing a volume below the surface of the ground. Features are computed from this array and two types of membership degrees are assigned to each location. A fuzzy membership value provides a degree of belongingness of a given observation in the classes of mines, false alarms, and background, while a possibilistic membership value provides a degree of typicality. Both membership degrees are combined using simple rules to assign a confidence value. The parameters of the membership functions are obtained by clustering the training data and using the statistics of each partition. Our preliminary results show that the proposed approach is simple, efficient, and yet, yields results comparable to more complex detection systems.

Published in:

Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on  (Volume:2 )

Date of Conference:

25-28 May 2003