By Topic

Robust H controller design with recurrent neural network for linear synchronous motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan ; Tzann-Shin Lee ; Chih-Hong Lin

In this paper, a robust controller design with H performance using a recurrent neural network (RNN) is proposed for the position tracking control of a permanent-magnet linear synchronous motor. The proposed robust H controller, which comprises a RNN and a compensating control, is developed to reduce the influence of parameter variations and external disturbance on system performance. The RNN is adopted to estimate the dynamics of the lumped plant uncertainty, and the compensating controller is used to eliminate the effect of the higher order terms in Taylor series expansion of the minimum approximation error. The tracking performance is ensured in face of parameter variations, external disturbance and RNN estimation error once a prespecified H performance requirement is achieved. The synthesis of the RNN training rules and compensating control are based on the solution of a nonlinear H control problem corresponding to the desired H performance requirement, which is solved via a choice of quadratic storage function. The proposed control method is able to track both the periodic step and sinusoidal commands with improved performance in face of large parameter perturbations and external disturbance.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:50 ,  Issue: 3 )