By Topic

Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
van der Merwe, R. ; OGI Sch. of Sci. & Eng., Oregon Health & Sci. Univ., OR, USA ; Wan, E.

For sequential probabilistic inference in nonlinear non-Gaussian systems, approximate solutions must be used. We present a novel recursive Bayesian estimation algorithm that combines an importance sampling based measurement update step with a bank of sigma-point Kalman filters for the time-update and proposal distribution generation. The posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted EM algorithm. This step replaces the resampling stage needed by most particle filters and mitigates the "sample depletion" problem. We show that this new approach has an improved estimation performance and reduced computational complexity compared to other related algorithms.

Published in:

Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on  (Volume:6 )

Date of Conference:

6-10 April 2003