Cart (Loading....) | Create Account
Close category search window

A complete family of scaling functions: the (α, τ)-fractional splines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Blu, T. ; Biomed. Imaging Group, Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Unser, M.

We describe a new family of scaling functions, the (α, τ)-fractional splines, which generate valid multiresolution analyses. These functions are characterized by two real parameters: α, which controls the width of the scaling functions; and τ, which specifies their position with respect to the grid (shift parameter). This new family is complete in the sense that it is closed under convolutions and correlations. We give the explicit time and Fourier domain expressions of these fractional splines. We prove that the family is closed under generalized fractional differentiations, and, in particular, under the Hilbert transformation. We also show that the associated wavelets are able to whiten 1/fλ-type noise, by an adequate tuning of the spline parameters. A fast (and exact) FFT-based implementation of the fractional spline wavelet transform is already available. We show that fractional integration operators can be expressed as the composition of an analysis and a synthesis iterated filterbank.

Published in:

Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on  (Volume:6 )

Date of Conference:

6-10 April 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.