By Topic

DISA: a robust scheduling algorithm for scalable crosspoint-based switch fabrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elhanany, I. ; Electr. & Comput. Eng. Dept., Ben-Gurion Univ., Beer-Sheva, Israel ; Sadot, D.

This paper presents and analyzes a high-performance, robust, and scalable scheduling algorithm for input-queued switches called distributed sequential allocation (DISA). In contrast to pointer-based arbitration schemes, the proposed algorithm is based on a synchronized output reservation process, whereby each input selects a designated output while taking into consideration both local transmission requests and the availability of global resources. The distinctiveness of the algorithm lies in its ability to offer high performance when multiple cells are transmitted within each switching interval. Relaxed switching-time requirements allow for the incorporation of commercially available crosspoint switches. The result is a pragmatic and scalable solution for high port-density switching platforms. The efficiency of the scheme and its robustness in the presence of admissible traffic, without the need for speedup, is established through analysis and computer simulations. Performance results are shown for various traffic scenarios including nonuniform destination distribution, correlated arrivals and multiple classes of service.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 4 )