Cart (Loading....) | Create Account
Close category search window
 

Architectures and algorithms for nonlinear adaptive filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hegde, V. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Radhakrishnan, C. ; Krusienski, D.J. ; Jenkins, W.K.

This paper considers series-cascade nonlinear adaptive filter architectures consisting of a linear input filter, a memoryless polynomial nonlinearity, and a linear output filter (LNL). The learning characteristics of the LNL structure are studied in terms of performance and complexity. Replacing the linear input stage and the memoryless nonlinear stage of the LNL model with a Volterra module is then considered. Adaptive algorithms are summarized for these structures and experimental examples are used to illustrate performance for the identification of an acoustic echo channel.

Published in:

Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth Asilomar Conference on  (Volume:2 )

Date of Conference:

3-6 Nov. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.