Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Automatic textual document categorization based on generalized instance sets and a metamodel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wai Lam ; Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Shatin, China ; Yiqiu Han

We propose a new approach to text categorization known as generalized instance set (GIS) algorithm under the framework of generalized instance patterns. Our GIS algorithm unifies the strengths of k-NN and linear classifiers and adapts to characteristics of text categorization problems. It focuses on refining the original instances and constructs a set of generalized instances. We also propose a metamodel framework based on category feature characteristics. It has a metalearning phase which discovers a relationship between category feature characteristics and each component algorithm. Extensive experiments have been conducted on two large-scale document corpora for both GIS and the metamodel. The results demonstrate that both approaches generally achieve promising text categorization performance.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 5 )