By Topic

Robust Doppler classification technique based on hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jahangir, M. ; QinetiQ Ltd, Malvern, UK ; Ponting, K.M. ; O'Loghlen, J.W.

A classification algorithm is presented that uses hidden Markov models (HMMs) to carry out recognition between three classes of targets: personnel, tracked vehicles and wheeled vehicles. It exploits the time-varying nature of radar Doppler data in a manner similar to techniques used in speech recognition, albeit with a modified topology, to distinguish targets with different Doppler characteristics. The algorithm was trained and tested on real radar signatures of multiple examples of moving targets from each class, and the performance was shown to be invariant to target speed and orientation and was able to be generalised with respect to variants within a class.

Published in:

Radar, Sonar and Navigation, IEE Proceedings -  (Volume:150 ,  Issue: 1 )