By Topic

SINR improvement in airborne/spaceborne STAP radars using a priori platform knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gerlach, K. ; Naval Res. Lab., Washington, DC, USA ; Picciolo, M.L.

It is shown that partial a priori information about the airborne/spacebased clutter covariance matrix (CCM) can be used effectively to enhance significantly the convergence performance of a block-processed space/time adaptive processor (STAP) in a clutter and jamming environment. The partial knowledge of the CCM is based upon the simplified general clutter model (GCM) which has been developed by the airborne radar community. A priori knowledge of parameters which should be readily measurable (but not necessarily accurate) by the radar platform associated with this model is assumed. The GCM generates an assumed CCM. The assumed CCM along with exact knowledge of the thermal noise covariance matrix is used to form a maximum likelihood estimate (MLE) of the unknown interference covariance matrix which is used by the STAP. The new algorithm that employs the a priori clutter and thermal noise covariance information is evaluated using two clutter models: (1) a mismatched GCM and (2) the high-fidelity Research Laboratory Space Time Adaptive Processing (RLSTAP) clutter model. For both clutter models, the new algorithm performed significantly better than the sample matrix inversion (SMI) and fast maximum likelihood (FML) STAP algorithms, the latter of which uses only information about the thermal noise covariance matrix.

Published in:

Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002

Date of Conference:

4-6 Aug. 2002