Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Augmenting SSEs with structural properties for rapid protein structure comparison

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chern-Hooi Chionh ; Dept. of Comput. Sci., Nat. Univ. of Singapore, Singapore ; Zhiyong Huang ; Tan, K.-L. ; Zhen Yao

Comparing protein structures in three dimensions is a computationally expensive process that makes a full scan of a protein against a library of known protein structures impractical. To reduce the cost, we can use an approximation of the three dimensional structure that allows protein comparison to be performed quickly to filter away dissimilar proteins. In this paper we present a new algorithm, called SCALE, for protein structure comparison. In SCALE, a protein is represented as a sequence of secondary structure elements (SSEs) augmented with 3D structural properties such as the distances and angles between the SSEs. As such, the comparison between two proteins is reduced to a sequence alignment problem between their corresponding sequences of SSEs. The 3-D structural properties of the proteins contribute to the similarity score between the two sequences. We have implemented SCALE, and compared its performance against existing schemes. Our performance study shows that SCALE outperforms existing methods in terms of both efficiency and effectiveness (measured in terms of precision and recall).

Published in:

Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE Symposium on

Date of Conference:

10-12 March 2003