By Topic

Vessel extraction in medical images by 3D wave propagation and traceback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Kirbas ; Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA ; F. K. H. Quek

This paper presents an approach for the extraction of vasculature from a volume of Magnetic Resonance Angiography (MRA) images by using a 3D wave propagation and traceback mechanism. We discuss both the theory and the implementation of the approach. Using a dual-sigmoidal filter, we label each voxel in the MRA volume with the likelihood that it is within a vessel. Representing the reciprocal of this likelihood image as an array of refractive indices, we propagate a digital wave through the volume from the base of the vascular tree. This wave 'washes' over the vasculature and extracts the vascular tree, ignoring local noise perturbations. While the approach is inherently SIMD we present an efficient sequential algorithm for the wave propagation, and discuss the traceback algorithm. We demonstrate the effectiveness of our integer image neighborhood-based algorithm and its robustness to image noise.

Published in:

Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE Symposium on

Date of Conference:

10-12 March 2003