By Topic

A mechanism of magnetic hysteresis in heterogeneous alloys

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stoner, E.C. ; Phys. Dept., Univ. of Leeds, UK ; Wohlfarth, E.P.

It is suggested that in many ferromagnetic materials there may occur particles distinct in magnetic character from the general matrix, and below the critical size, depending on shape, for which domain boundary formation is energetically possible. For such single-domain particles, change of magnetization can take place only by rotation of the magnetization vector. As the field changes continuously, the resolved magnetization may change discontinuously at critical values of the field. The character of the magnetization curves depends on the degree of magnetic anisotropy of the particle and on the orientation of easy axes with respect to the field. The magnetic anisotropy may arise from the shape of the particle, from magnetocrystalline effects, and from strain. A detailed quantitative treatment is given of the effect of shape anisotropy when the particles have the form of ellipsoids of revolution, along with a less detailed treatment for the general ellipsoidal form.

Published in:

Magnetics, IEEE Transactions on  (Volume:27 ,  Issue: 4 )